Substratum topography modulates corneal fibroblast to myofibroblast transformation.
نویسندگان
چکیده
PURPOSE The transition of corneal fibroblasts to the myofibroblast phenotype is known to be important in wound healing. The purpose of this study was to determine the effect of topographic cues on TGFβ-induced myofibroblast transformation of corneal cells. METHODS Rabbit corneal fibroblasts were cultured on nanopatterned surfaces having topographic features of varying sizes. Cells were cultured in media containing TGFβ at concentrations ranging from 0 to 10 ng/mL. RNA and protein were collected from cells cultured on topographically patterned and planar substrates and analyzed for the myofibroblast marker α-smooth muscle actin (αSMA) and Smad7 expression by quantitative real time PCR. Western blot and immunocytochemistry analysis for αSMA were also performed. RESULTS Cells grown on patterned surfaces demonstrated significantly reduced levels of αSMA (P < 0.002) compared with planar surfaces when exposed to TGFβ; the greatest reduction was seen on the 1400 nm surface. Smad7 mRNA expression was significantly greater on all patterned surfaces exposed to TGFβ (P < 0.002), whereas cells grown on planar surfaces showed equal or reduced levels of Smad7. Western blot analysis and αSMA immunocytochemical staining demonstrated reduced transition to the myofibroblast phenotype on the 1400 nm surface when compared with cells on a planar surface. CONCLUSIONS These data demonstrate that nanoscale topographic features modulate TGFβ-induced myofibroblast differentiation and αSMA expression, possibly through upregulation of Smad7. It is therefore proposed that in the wound environment, native nanotopographic cues assist in stabilizing the keratocyte/fibroblast phenotype while pathologic microenvironmental alterations may be permissive for increased myofibroblast differentiation and the development of fibrosis and corneal haze.
منابع مشابه
Myofibroblast transformation of cat corneal endothelium by transforming growth factor-beta1, -beta2, and -beta3.
PURPOSE Under certain pathophysiologic conditions, the corneal endothelium can produce an abnormal posterior collagenous layer (PCL) that reduces light transmission. Previous studies suggest that formation of PCLs can result from transformation of endothelial cells to a proliferative myofibroblast phenotype. The purpose of this study was to determine the potential role of transforming growth fa...
متن کاملTransforming growth factor-beta-stimulated connective tissue growth factor expression during corneal myofibroblast differentiation.
PURPOSE Transforming growth factor beta1 (TGF-beta) stimulates the differentiation of myofibroblasts as indicated by the nascent expression of alpha-smooth muscle (alpha-SM) actin protein and its organization into stress fibers. Downstream messengers of TGF-beta in the conversion from the fibroblast to the myofibroblast phenotype were investigated. Whether TGF-beta increases the transcription o...
متن کاملThe Role of Titanium Surface Microtopography on Adhesion, Proliferation, Transformation, and Matrix Deposition of Corneal Cells.
PURPOSE Titanium (Ti) is an excellent implantable biomaterial that can be further enhanced by surface topography optimization. Despite numerous data from orthopedics and dentistry, the effect of Ti surface topography on ocular cells is still poorly understood. In light of the recent adaptation of Ti in the Boston Keratoprosthesis artificial cornea, we attempted to perform an extended evaluation...
متن کاملMyofibroblast differentiation modulates keratocyte crystallin protein expression, concentration, and cellular light scattering.
PURPOSE The purpose of this study was to determine whether myofibroblast differentiation altered keratocyte crystallin protein concentration and increased cellular light scattering. METHODS Serum-free cultured rabbit corneal keratocytes and TGFβ (5 ng/mL) induced myofibroblasts were harvested and counted and protein/RNA extracted. Expression of myofibroblast and keratocyte markers was determi...
متن کاملRegulation of matrix remodelling phenotype in gingival fibroblasts by substratum topography
Gingival connective tissue often has a composition resembling that of scar surrounding dental implant abutments. Increased cell adhesion, α-smooth muscle actin (α-SMA) expression and increased extracellular matrix deposition are a hallmark of fibrotic cells, but how topographic features influence gingival fibroblast adhesion and adoption of the α-SMA positive myofibroblast phenotype associated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 53 2 شماره
صفحات -
تاریخ انتشار 2012